Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Michael Bolte, ${ }^{\text {a* }}$ Crenguta Danila ${ }^{\text {b }}$ and Volker Böhmer ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11,
60439 Frankfurt/Main, Germany, and
${ }^{\mathbf{b}}$ Fachbereich Chemie und Pharmazie, Abteilung Lehramt Chemie, Johannes-GutenbergUniversität, Duisbergweg 10-14, 55099 Mainz, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
R factor $=0.094$
$w R$ factor $=0.297$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination of 5,11,17,23-tetra-tert-butyl-25,27-di(ethoxycarbonylmethoxy)-26,28-dihydroxycalix[4]arene chloroform disolvate at low temperature

The title compound, $\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{O}_{8} \cdot 2 \mathrm{CHCl}_{3}$, previously reported by Ferguson et al. [Supramol. Chem. (1996), 7, 223-228], has been rerefined against new intensity data. The geometric parameters are comparable, as far as they are available. However, the results of the present structure determination are of significantly higher precision.

Comment

1,3-Diethers of calix[4]arenes with a syn orientation of the ether groups are easily available precursors for various derivatives (Collins et al., 1989). The title compound, (I), was first described by Arnaud-Neu et al. (1989) and its structure has been reported some years ago (Ferguson et al., 1996) [(II) hereafter]; however, their crystal diffracted very weakly and the data were of quite low resolution [only 16% of the measured data could be labelled observed in the 2 to $20^{\circ} \theta$ range, with $I>2 \sigma(I)]$. Thus, the aromatic rings had to be treated as rigid groups and restraints were necessary for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds. In addition, the solvent could not be identified, but had to be treated with the SQUEEZE option in PLATON (Spek, 1990). Furthermore, no coordinates of (II) are available in the Cambridge Structural Database (Version 5.24 of November 2002; Allen, 2002).

(I)

We present here the structure of (I), determined from lowtemperature data with significantly higher precision. Since the coordinates of the published structure are not available, we had to restrict the comparison of both structure determinations to the values printed explicitly in the paper. We have labelled the atoms in the same way and Fig. 1 shows nearly the same view as for (II). The O $\cdots \mathrm{O}$ distances, the interplanar angles between the aromatic rings and the shortest distance of the clathrated ester residue to the guest molecule are comparable (Table 2). The molecule adopts the cone conformation which is stabilized by two intramolecular hydrogen bonds. One of the ester residues is located in the molecular cavity of a symmetry-related molecule. The shortest C $\cdot \mathrm{C}$ distance from the terminal methyl group is $\mathrm{C} 16 A \cdots \mathrm{C} 1 B^{\mathrm{i}}$

Received 10 March 2003
Accepted 17 March 2003
Online 31 March 2003
3.685 (6) \AA [symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, z$]. The reference plane of the calixarene, defined as the mean plane of the bridging C atoms (here $\mathrm{C} 7 A, \mathrm{C} 7 B, \mathrm{C} 7 C$ and $\mathrm{C} 7 D$), is almost planar (r.m.s. deviation $=0.136 \AA$); the rings $\mathrm{C} 1 A-\mathrm{C} 6 A, \mathrm{C} 1 B-$ $\mathrm{C} 6 B, \mathrm{C} 1 C-\mathrm{C} 6 C$, and $\mathrm{C} 1 D-\mathrm{C} 6 D$ subtend angles of 64.91 (7), 57.81 (11), $67.10(10)$ and $53.42(12)^{\circ}$, respectively, with this plane.

Experimental

The title diester was prepared, according to the literature method of Jakobi et al. (1996), by refluxing tert-butylcalix[4]arene with ethyl bromoacetate in dry acetonitrile in the presence of potassium carbonate. Single crystals formed during recrystallization from chloroform/methanol.

Crystal data

$\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{O}_{8} \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=1059.80$
Orthorhombic, Pbca
$a=17.7766$ (2) \AA
$b=20.4108(1) \AA$
$c=32.0452(2) \AA$
$V=11627.11(16) \AA^{3}$
$Z=8$
$Z=8$
$D_{x}=1.211 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD three-circle diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.866, T_{\text {max }}=0.910$
52500 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.095$
$w R\left(F^{2}\right)=0.297$
$S=1.01$
10229 reflections
643 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1D-H1D $\cdots \mathrm{O} 1 A$	0.84	1.89	$2.722(4)$	168
O1 $B-\mathrm{H} 1 B \cdots \mathrm{O} 1 C$	0.84	1.94	$2.777(4)$	171

Table 2
Comparative table of the geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ of (I) and (II).

	(I)	(II)
Angle A / C	$48.08(14)$	49
Angle B / D	$68.77(11)$	72
$\mathrm{O} 1 A \cdots \mathrm{O} 1 B$	$3.037(4)$	3.2
$\mathrm{O} 1 B \cdots \mathrm{O} 1 C$	$2.777(4)$	2.9
$\mathrm{O} 1 C \cdots \mathrm{O} 1 D$	$3.094(4)$	3.1
$\mathrm{O} 1 D \cdots \mathrm{O} 1 A$	$2.723(4)$	2.7
$\mathrm{C} 16 A \cdots \mathrm{C} 1 B^{\mathrm{i}}$	$3.685(6)$	3.60

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, z$.

Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=2.5-24.8^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.43 \times 0.32 \times 0.28 \mathrm{~mm}$

10229 independent reflections 6797 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-21 \rightarrow 13$
$k=-24 \rightarrow 24$
$l=-37 \rightarrow 27$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1605 P)^{2}\right.$
$+26.7478 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.34 \mathrm{e}_{\mathrm{C}}{ }^{-3}$
$\Delta \rho_{\min }=-0.91 \mathrm{e}^{-3}$

